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1. Introduction; 

Consider the following problem, which Is one of the classical sequencing 

problems: We are to produce on m machines one single aggregate consisting 

of n different Items each of which is to be operated on by some or by all 

of the machines.  The order of processing each Item through the machines Is 

given. We are also given the operation time for each Item on each machine. 

It Is assumed that at any moment: 

1°. No machine Is able to handle more than one item 

2°. No Item can be operated on by more than one machine. 

Given the operating time for each item on each machine the problem is to 

find a production program which will be called optimal program for producing 

the aggregate In a minimal time. 

This problem was considered by S. B. Akers and I. Friedman in [1] where 

they presented a solution method for the mx2 case. For the general mxn 

case (m-raachlnes, n-ltems) these authors gave a criterion which enables 

to check whether a program is feasible or non feasible. To solve the mxn 

case one must first consider all programs. Then,applying the Akers-Friedman 

rule, all non feasible ones are removed and then finally the optimal solu- 

tion is found by examining each of the remaining programs. 

This method is laborious, even for moderate values of m and n, although 

It should also be noted that its authors supply additional advice on how 

to remove non optimal plans for the nix2 case.  Even so the number of 

remaining feasible programs to consider is still large. By means of i 

graphical approach, presented In [2], Akers provides an approximate method 

of solving the mx2 case. This was subsequently elaborated in [9] where, 

using Akers' graphical approach,I was able to solve the mx2 problem and 

ra 
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in this same reference I also supplied an approximate method for solving the 
1/ 

mxn case.   R. Bellman [3] and S. M. Johnson [7] independently solved the 

2xn case on the assumption that the same order of processing the items 

through two machines, say A and B, is used. On this assumption Johnson also 

solved the 3xn problem for two special cases.  L. G. Mitten [8] solved a 

generalization of the Bellman -Johnson 2xn problem while maintaining assump- 

tion 1 , as above, plus the condition in which there are upper limits on the 

length of time for each item from the moment it starts on machine A until it 

is finished on machine B. 

All of the methods mentioned above for solving the sequencing problem 

are combinatorial in nature. 

After 1958 when R. E. Gomory [6] first published a method for solving the 

integer programming problem, papers appeared which treated this sequencing 

problem as a special case of an integer programming problem.  These cases, 

however, involved introducing a considerable number of variables and con- 

straints.  For instance, E. H. Bowman in [4], solving a 4x3 problem by the 

integer programming method, deals with at least 300 variables and even more 

constraints.  Several authors (e.g., G. B. Dantzig [5], H. M. Wagner [10]) 

then tried to find an integer programming formulation of this problem which 

would require a smallest   possible amount of variables and constraints. 

This paper presents solutions to the following problems. 

1. A generalization of the 2xn Bellman-Johnson problem where the pro- 
cessing order of the items is not the same. 

2. The 3xn Bellman-Johnson problem for several new special cases. 

3. The 2xn Bellman-Johnson case where each item already operated on by 
machine A must wait until it starts on machine B. 

"1 

i 

•^This method may  sometimes not work at all in the sense that it may 
lead  to a program which  is unfeasible. 
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In the first sections we present (without proof) the methods of solution to 

the following problems. 

1. 2xn and 3xn Bellman-Johns on case (Johnson's method) 

2. The mx2 Akers-Friedman problem (solved by the author of this paper) 

The final section of the paper then presents cases for which the method for 

solving the mxn case as given in [9] is an exact method of solution. 

Remark: The same symbols appearing in different sections of this 
paper may have different meanings. 

2.  Solution of the 2xn and 3xn Bellman-Johnson Case. 

We Illustrate the solution method by an example: There are two machines, 

A and B, and five items, which we denote by the numbers 1 through 5.  Each of 

the items is first operated on by machine A and then by machine B. The 

operating times are given In table 1. 

Table 1 

A,   B,   E. 

1 

2 

3 

4 

5 

3 4-1 

5 2 3 

4 1 3 

6 4 2 

2 5-3 

Hence, for instance, B^l means that the operating time for item 3 on 

machine B is equal to one unit of time.  The numbers  E.  in the last 

column are equal to A,-B,. 

.AAM^t 
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Each working (and also each optimal) program is determined when we know 

in which order the items pass each machine. Johnson showed that to find an 

optimal program (also in the 3xn case) one may consider only programs 

where the processing order for both machines is the same. However, there 

exist optimal programs which do not possess this property. 

The problem reduces to that of finding a processing sequence -- a 

permutation of n numbers  l,...,n — corresponding to the optimal program. 

Divide the set (l,...,n) into two disjoint subsets s and s', where 

s = {(i) | Ei < 0 ]  and  s' - {(i) | E1 ^ 0) 

Let s and s' be sets of t    and n-t    elements respectively (0 <[ -t ;£ n). 

The method of constructing the optimal sequence is as follows: Order the 

elements l,...,n so that in the sequence 

a) the elements of s appear before the elanents of s* 

b) the corresponding numbers A  form a nondecreaslng sequence 

for ies and a nonincreasing sequence for ies'. 

In our example s - (1,5), s* « (2,3,4).  Using the rules a and b which 

were Just given, it is easy to establish the optimal sequence, which is 

(5,1,4,2,3).  Figure 1 presents the optimal operation program corresponding 

to the sequence (5,1,4,2,3). 

Remark; The numbers shown in Figure 1 denote items 

j t A .5.1.4.2.3 

B •  .,5,1 ,  4 ,&       »3 

Figure 1 
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The minimal operating time necessary to produce the aggregate is equal 
5 5 

to 21 units    (Z   A. + 1,  or    Z   ß. + 5), where the numerical values    1 and  5 
i-1 1 i-1    1 

denote idle time for machines A and B respectively. 

In [7] Johnson also solved the    3xn case   where the processing order for 

all  the items is    A, B, C,     and where for all    i, j-1,2,... ,n:    or      B   < A 
J 

or    B.  <    C  . 

Consider a    3x7    example with the following table of operation times. 

Table 2 

1 

2 

3 

4 

5 

6 

7 

B, C1  Ai+Bi B1+C1 

6 2 3 8 5 

7 2 4 9 6 

9 6 7 U 13 

8 6 2 14 8 

6 4 3 10 7 

10 2 5 12 7 

9 1 2 10 3 

Ae can be seen, here have the case  B. < A..      One now finds the optimal 

sequence by applying the method from the 2xn case for two fictitious machines, 

M and N, with operating times obtained from the expression M "A +B., N -B.+C . 

In this example s is an empty set (all M -N.  are positive)» 

so  s* - (1,2 7). Ordering the numbers N  in a nondecreasing sequence 

we get two optimal sequences -- viz. , (3,4,5,6,2,1,7) and (3,4,6,5,2,1,7). 

iaii-fc^ 
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3    Solution of the    mx2    and    mxn   Akers-Friedman Problem. 

We again illustrate the solution method by means of a    5x2    example. 

The passing order as well as the operation times are as follows: 

Item 1  ~    A5
B

2
CVE

3 

Item 2   —    AVEVB
2 

Consider an    xOy    coordinate system where the    x-axis    coresponds to Item 1 

and the    y-axis    to Item 2.     Construct a rectangle    PMJN    where 

PN - A1+B1+C1+D1+E1 -  5+2+4fl+3 »  15 

and 
PM - AJ+BJ+CJ+DJ+EJ - 4f2+2+2+1 -  11 

Assign to machines the following "vertical"  areas in ABCDE order 

0 <£ x ^ 5 to machine    A 

5 < x ^ 7 to B 

7 ^ x < 11        to                     C 

11 < x < 12        to D 

12 < x <; 15        to E 

Assign to machines the "horizontal" areas in a    ACEDB order 

0 < y < ^ to machine    A 

4 < y < 6 to C 

6 < Y < 7 to E 

7 < y < 9 

9^y ^ 11 

to 

to 

D 

B 

To each machine there corresponds a rectangle am determined by the intersec- 

tion of the horizontal  and vertical intervals  that were associated with this 

machine.    E.g.,  to machine    C    there corresponds the rectangle:    7 £ x < 11, 

4 < x < 6. 

.1 
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One may now describe each program by a continuous line with the 

following properties: 

1. Points P and Q are on this line 

2. The line does not cross any of the rectangles A,BfC,D,E. 

3. The line consists of straight line segments which are either 
parallel to one of the axes or else forming a 45° angle with 
the x-axis. 

The total length of all vertical (horizontal) segments is the total waiting 

time for Item 1 (2).  The total length of the projections on either axis 

of the 45° segments is the total time when both items are operated on 

simultaneously (but on different machines). 

The problem reduces to that of finding a line with minimal total length 

for the vertical segments.  Alternatively, however, one may look for a line 

where the total length of the horizontal segments is minimal or, Instead, 

one may search for a line with maximal total length for the 45° segments. 

All of these problems are equivalent. 

Let us Introduce the following definitions and notations. By a node we 

mean a north-west and south-east corner of each rectangle and also points 

P and Q. Consider two nodes w. » (Xj.yj) and w. - (xj^) such that 

x. ^ x2 and y. < y_ (so w.  cannot be on the right of or above w»).  We 

say that node w.  is neighboring to w. If one can link these nodeq by a 

line with the properties 2 and 3 specified above. 

Let w  be a neighboring node to w». We define a distance, d(w W2) 

as follows. 

d(w1w2) - max [0, (yj-y^ " (x2 "xi^ 

h  a>ai -"-"- 
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ii 
Let TT(W) be the set of nodes such that w is neighboring to each element of        J 

i 

TT(W).    The nodes of    n(w)    lie in a rectangle whose corners are points 

w and Q. 

Consider the set of all  lines which have properties    2    and    3    linking 

w    and    Q.     By a length of each such line we mean the total  length of all of 

its vertical segments.     In this set there exists a line of minimal  length. 

Let    f(w)    be the length of this line.      Then the following is  true 

f(w) - min_ [d(w,w) + f(w)]. (2) 
w CTTCW) 

We arrange the nodes so that their    x    coordinates  form a nonincreasing 

sequence.    Nodes which have the same    x-coordlnate we arrange in such a way 

that their    ycoordinates form a decreasing sequence.    E.g.,  in  the example 

we are using we get the following sequence 

(15,11),  (15.6).  (12,7).  (11.9),  (11.4).   (7,9).  7.6).   (5.11), 
(5,0).   (0.4).   (0.0). 

The arranged nodes are denoted by    W......W      (w.-Q, w.-P).    Applying    (2), 

find the values of    f(w )    for    8-2 k    (f(w )«0)    and draw the lines of 

the length    f(w ).    Write the numbers for    f(w )    above the corresponding 
8 8 

nodes   w .    The line with length    f(w )-f(P)    (in our example this is    f(w11)) 

is the solution of the problem.    This  line is  indicated on Figure 3 by arrows; 

its length is equal to 3 units.    This means that the total operation time 

equal*  A.+B -K^+DJ+EJ+3 ■ 18 units.    From the optimal line It is  easy to read 

the optimal program which is presented in Table 3. 

From the optimal program one can also read the optimal operation sequences 

for each machine, which may be written as  follows:    A,. 2^» Bn   2V ^(\ 2V 

D(l,2)' E(2.1)- 
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Alten 2 

Item 1 

Figure 3 

Symbol    C^.  **    means  that machine    C    will operate first Item 1 and then Item 2. 

By a program we will mean also the set of operation sequences for all machines. 

Table    3 

Period 

Item 1 
Is 

operated on 
by machine 

Item 2 
Is 

operated on 
by machine 

0—5 A - 

5—7 B A 

7—9 C A 

9-11 C - 

11—12 D C 

12—13 - C 

13—14 - E 

14—16 E D 

16—17 E B 

17—18 - B 

. ■^IxamilaaMiMM— m i ■ n i M—M—mi 
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Suppose the coordinate axes correspond  to items  1    and    J.     If  the line 

(presenting an operation program) Is running between some rectangle,  say    F, 

and an axis corresponding to Item    1    then  the corresponding program will 

contain a symbol    F^.   .v   — which means that machine    F    will operate first on 

Item    1    and then on Item    J. 

In [9]  an approximate solution method  is given (Illustrated by a    3 x 10 

example) of the mxn problem.    With this method one must first solve all    (2) 

possible   mx2    problems by the method shown in this section.    Given the    (-) 

optimal programs,   then,  considering each machine separately, one constructs a 

program for the    mxn    problem (this is not  always possible) and then presents 

it graphically In  the manner shown in Figure 1. 

Item 2 

was 

Item 1 

Figure 4 

Let us  Illustrate this procedure by a       4x3    example, which/mentioned 

in Section 1 as given by Bowman in [4].    The processing order and operation 

times are as  follows: 

Item 1  ~ A B C D 

,AO 3 
Item 2  — C A D B 

Item 3 — D A . 
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Solving    3    problems  — one for Items 1,2    and machines    A,B,C,D,  another 

for Items  1,3    and machines    A,D    and  a third  for Items 2,3    and machines 

A,D — by the method described  in this  section we get    3    optimal  lines  to 

which  there correspond   three programs    A..   2VBn   2VC<,2 1 VDr2  1 "i     ^see 

Figure A);    A^^^    and    A(2>3),D(3j2).     From    A(1 j2).A(1)3),A(2>3)    it 

follows that the operating program for    A    is    A^.  2   _y    The operating 

sequence for    B    and    C    as determined  from the  first of the three problems 

Is    B,,  2v  and C,«  -ty     For machine    D    we get    D^_ o   1 V ^0 we ^ave  foun^ 

the program    k*.  _  3\.B^1   2VCr2 IV0^"? 2  1"^     ^or t^e    ^x^    problem which  is 

presented on Figure 5. 

A  i 1 

2 

J     i_ 2 , 3 1 

-4 

1 

l 

B   , 

C   j. 

t-
*

 

1 

2 i 

1 

D   i_ 3 L. 2 

Figure 5 

In general  for the    mxn    case (m > 2, n > 2)    we are not able to say 

whether a given program is optimal without examining all programs 

((n.1)      in number).     For our example, however,   the program we obtained is 

optimal.    This  follows  from the fact that:    a)     the total operation time of 

no program for the    4x3    problem is smaller than the minimal operation time 

—'Remark:     It is impossible to construct a program (such a program will be 
called infeasible) if the solution of the second problem were    A^-   -v D,^ „%. 
Then we would deal with  sequences    D,2  i v'Vl   TV^fS 2^    from whicH    it 
is Impossible to derive a working plan*for machine    Ö. 
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of either aubproblem 4x2 and 2x2.  b) The total operation time for the 

problem is equal to the minimal operation time (24 units) of the 4x2  problem. 

In [1] Akers and Friedman gave the following necessary and sufficient 

condition for a program of an mxn problem to be feasible:  If for items 

1,2 k (k < n)  the processing sequences are 

1 2 
for Item 1 -- ... M ... M ... 

2 3 
for Item 2 — ... M ... M ... 

for Item k-1 -- ...Mk"  ...Mk ... 

k     1 
for Item k -- ... M ... M ... 

(the machines are then said to form a k-element cycle), then the feasible 

program cannot be of the form 

M (...2...!...) M (...3...2...)•••"  (...k...k-l...)M (...l...k...) 

This implies that for the Bellman-John son case there exist no unfeasible 

program.  This result Is due to the fact that there is no cycle since tha 

passing order is the same for all items. 

4  Solution of the 2xn Case. 

1.  There are two machines A and B  and  n items where the passing 

order for item 1,2 n.  is AB while for the remaining n2  items , 

n.+l,..., n (n1+n-=n)  the order is BA (for n =0 or n^O we get the 

2xn Bellman-Johnson case). 

The production program is determined given A B  where p as well 

as q are permutations of numbers l,...,n.  Let r=(l,2,... »n.) and 

r=  (n+l,...,n).  Then the Akers-Friedman feasibility theorem for the 2xn 

problem becomes:  Program AB  is feasible if and only if for any ier and 

jer    it is impossible for p  and q  to be simultaneously of the form 

—a   ■ mam ■ MM       l      l    -    - m        i  - M^MI».^—^ 
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P"  (...   i ...   J   ...),  q»  (...   j  ...   i ...). 

Let us denote by    Q    the set of feasible programs    A B      where the  first    n, 
P q 1 

numbers  in    p    are elements of    r    while  the  first    ru    numbers of    q    belong 

to    r.    The following theorem holds 

Theorem    1:    For each  feasible program 

A    B       there  exists  a program 
P    q K    6 

A ^ B ^     that belongs  to    Q    and 

consumes no more time.     (This will 

be called  a "no worse" program.) 

Then either 

Proof:    Let    A    B    e Q   p    q 

P=  (•••!»]■••)    where    ier,  jgr or 

q =  (...i,j...), where    ier,  jer. 

Consider the first  case;    here    q    must be of the form       (...i j...) 

but not of the  form (...j...i. .. ) 

otherwise program    A B    would be unfeasible.     Figure 6 illustrates program 

A B  . 
p q 

k      A. 
«     1   « 

J-LL. 
I   B. 
 i LL 

Figure 6 

Consider program    A   ,B      where    p' =  (...j,i...)  - (p*    was obtained  from    p 

by transposing    i  and j).     This program shown on Figure 7    is  feasible accord- 

ing to the Akers-Friedman theorem. 

A JL. *<•    Al     ■ 

B      ll I    M 
I    B. 

J I li. 

Figure  7 
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As seen from this figure program A ,B 
p q 

is not worse than A B . 
p q 

This can 

be seen by observing that the time of finishing the operatiQn of parts i 

and j on machine A are the same in both programs but one may finish the 

operations of these parts on machine B applying program A ,B 
p q 

sooner than 

in program A B . 
p q 

Let us turn to the second ca e: p must have the form ( ..• i, ... j ••• ) 

where ier, jcr. In a way similar to the first case one may show that pro-

gram 

A B • 
p q 

A B p q 

than 

A B 1 with 
p q 

q' - ( ••. j,i, •.• ) is feasible and not wor s e than program 

It is easy to define a procedure leading from any feasible program 

to a feasible program which belongs to 0 and is not worse 

A B This procedure will be described in an example. 
p q 

Let A B •A- - B- -p q (5,1,4,3,2) (5,1,4,2,3) 

where the dashed numbers indicate elements of r while the remaining numbers 

are elements of r. 

For convenience write A B in the form p q 

- (~·1·~·3,2 ) 
5,1,4,2,3 

Below, for instance , we show sequence of intermediate and feasible pro-

grams (each program being not worse than the preceding one) leading from 

(:) to (::)e 0 

(~· 1, 4. 3, }(~· 1, 3, 4, ~(~· 1, 3~ 2~ ~~(:· 5, 
3, 2, ~ 5, 1, 4, 2, 5, 1, 4, 2, 3 5, 1, 4, 2, 3 5, 1, 4, 2, 

/ 

}(~· 
- - !}( ::) • n --\~' 

3, s. 2. 3, 2, 5, ~~c· 3, 2, 5, 

4, -5, 1, 2. 3 5. 1, 4, 2, :;/ 5, 4, 1, 2, 
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Applying theorem 1 we restrict ourselves only to programs belonging to 0 

(there may exist, however, optimal programs not belonging to O). All these 

programs are feasible. 

2. Let (p) be an arbitrary element of n. There are three cases 
q 

Case 1: E A • E Bi" 
ier i 

hl"' 

Case 2: E Ai > J:_ Bi • w. 
ier ier 

Case 3: E Ai < E Bi. 
ieF ier 

Consider Case 1. Then (p) is an optimal program since t he correspond­
q 

ing o eration time i s 
y 

max (E Ai , E B i) 

hr+r hr+r 

and there ex i sts no program with a smaller operation ime (see Figure 8). 

A 

B 

Fi gure 8 

The number of optima l programs i s equal to (n
1
!)2 

(n2!)2 
which is the 

number of elements of the s et n. 

Cons ider Cas e 2. Program is optimal if E_Ai > E Bi 
ier icr 

(Case 2) 

f or then the t ot a l operation time equals E A and no program has a less 
ier+ri 

consuming operation time. Here, like in Case 1, we also have 

opt im 1 programs . 

YThe symb ol R + r means a union of sets r and r. 
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Suppose, however, that  S A. < E B. (remember that  E A. > ZB,). 
ler   ler ler   IgF 

To find an optimal program one must first solve a Bellman-Johnson 

2xn.  case where the processing order is AB but with an additional assump- 

tion (assumption w) that machine B will start at least w units later than 

machine A does. 

Consider a 2xn1  case under assumption w and let ( ) , ufv, be an 

arbitrary program for this problem.  The following is true. 

Theorem 2.   Program ( ) or ( ) is not worse than ( ). 

Proof;   It is obvious (see figure 9a and 9b) 

/. ..jli...  \ 
that f I is not worse 

(b) 

A    A 
 J I i_JL 

I     B,    B. 
J ■ i Li 

Figure    9 

It  is  easy to   '       .op a procedure leading from any program 

fA.      ,. M    fA to a not worse one[      )   or   (       ) 
Vj \7      VV 

The following example Illustrates the procedure. 

'u\ /l,4,3,5,2\  /l,3,4,5,2\   A,3,4.2,5\   /l,3,2,4,5^ 

1,2,3,4,5^ ^/v 

"^! 1,2,3,4,5/  Vv 

This  completes  the proof of  the  theorem. 
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From now on we will consider only programs    (   )    which  are elements  of 

Q   but such  that the elements of    r    appear in the same order in    p    as well 

as  in    q.     Denote the set of all  such programs    Q    where    Ö c  Q.    Now we  face 

an    2xn.     Bellman-John son case,   but with assumption    w.     Figure 10 shows 

one of  the possible programs  for  this  case. 

A  .       A3       .    Al     . A2 JL 

B  .    W  . Xl.i3_^ ll 

Figure 10 

We are to find a permutation    u    of numbers    1,... »n.     such that  the 

operation  time for program    (   j  will be minimal.     For such  a program the  total 

idle  time  for either machine will  also be minimal. 

By    x let us denote the  idle time  (in suitable  time units) of 

machine    B     after it completed   item    i-1    but before it  starts  to operate 

on the next item (the    i-1—    item need not be the same as  item    i-1, 

see Figure 10). 

Without  loss of generality however we may  assume (for convenience)  that 

u«   (1,2,... »n, ).        Then the     i—    item will be just  item    i.     Also 

x    - max(A1-w,0), 

x- " max(A1+A2-B1-x1-w,0), 

x1+x_ = max(A1+A9-B1-w,x1 ) = maxi     E   A  -    EB.-w,   Ex 1    ^ 1    ^     i i ^i=1     i    i=1  i       lal   3 

Si   ilarly . . 

Z    x    - maxf   EA  -    E      B.-w,     E     x 
1=1     1 \i-l 1=1 i=l 

= max max   (K  -w,0)  = max(max K -w,0), 
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where 
t t-1 

K    =       E   A    -    E    B  . 
C i-1     1       i-1     1 

The problem is  to  find  such  a permutation of elements  1,2 n.   for which 

the  corresponding    j)c    is minimal.     Note that K    < w  implies  that the 

corresponding idle time  equals  zero and  therefore  this permutation  is 

optimal.     If, however,    max    K    > w    then the total   idle time for machine    B 

is  equal  to max    K    - w. 

It  is obvious  (since    w    is  a constant)  that  a permutation  is  optimal 

if        max    K      is minimal. 

Thus the problem reduces to one of finding a permutation with minimal 

max    K      and this is  Identical with  the classical    Bellman-John son case [7]. 
l<t<n1

t 

To  solve the problem one may apply  Johnson's method as given in Section 2, 

above.     The optimal program    (p)    for Case 2 has  the following properties. 

1) (P) e 5 
«I 

2) the first    n.     elements in    p    and  the last    n.     elements 

in    q    are arranged according  to Johnson's method. 

3) The order of  the remaining elements  in    p and q    may be 

arbitrary. 

2 
Set    fi    therefore contains     (n«.')      optimal programs. 

Remark:     if     max    S   x    <      E _ A    -        E      B., 
v    icv ier+r i«r4-r 

where    v    is an arbitrary permutation of    n.     elements 

of    r    then  the solution of the problem can be the 

same as  in Case 1. 
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Consider Case 3. 

If in addition      S B.  >    E    A      then,  (p)    Is an optimal program since the 
ler ier q 

corresponding total working    time equals    E   B,    which is minimal.    Then, 
let+f 

2 2 like in Case 2,  there are    (n..')    (n«.')      optimal programs.    Suppose that 
i 

E B.  < E A. ■ w .       In a way similar to Case 2 we come to the following 
er        icr 

conclusion:      The optimal program    (H    has the following properties. 

the first    n.    elements of    q    and  the last    n«    elements 

of    p    are ordered according to Johnson's method (for 

the    2xn2 case - with machines A, B,  and parts    ier) 

the order of the remaining elements in    p    and    q 

is arbitrary. 

Remark: 

if   max    S x    <      E     B.  ^    E     Ai   , 
lev let+r ier+f 

then the optimal solution can be the same as in Case 1. 

(v    is a permutation of    n.    numbers  from the set    r) 

Corollary:    Any program (   ) posesslng properties    1,2,   3    is always 

optimal. 
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Example: Consider a 2x7 problem with r »• (1, 2, 3, 4, 5) and 

r ■ (6, 7). Then assume the following table of operating 

times obtains: 

Table 4 

Ai B- 

1 

2 

3 

4 

5 

6 

7 

Consider an arbitrary program belonging to    O,  say program 

7 3 

3 2 

2 1 

1 1 

2 7 

3 3 

1 2 

(q
p) 

1, 2, 3, 4, 5. 6, 7 
6, 7, 1, 2, 3, 4, 5J 

It Is easy to check (by drawing a program like that In Figure 1) that its 

total operation time equals 22 units. 

Here we have the second case because 

Z Aj, = 15 > Z B = 4 and Z^ = 5 < E B1 - 14. 
icr        ie? icr      ier 

According to the solution procedure of Case 2 we solve the Bellman-Johnson 

problem (machines A, B, items 1, 2, 3, 4, 5) and get two sequences 5,1,2,3,4 

2,    2 
2 (n-.1)  optimal pi 

5, 1, 2, 3, 4, 7, 6 

2,    2 
and 5,1,2,4,3. Therefore one can construct 2 (n-.1)  optimal programs 

belonging to Q.    One of those is program 
6, 7, 5, 1, 2, 3, 4, 

with the 

total operation time equal to 19 units (see Figure 11) . 
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A    ■   5  . 1 .2.3  .4.7.    6     . 

B     .-6.7. 5 .1.2   .8.4. 

Figure  11 

5      Solution of Some New Special Cases of the Bellman-Johnson Problem 

There are three machines    A, B, C    and    n    Items     1,2 n,    all to be 

operated in order    ABC.    The operation times  for the items are denoted,  as 

before, by    A. ,B  ,C      while    x. »Y.,    will mean, respectively, the idle times  for 

st machines    B,   and C.     after finishing the    i-1—    item and before operating 

on the i— item. Johnson proved that to find an optimal program one may 

restrict one's self to programs of the type ABC where p is a per- 

mutation of n numbers l,2,...,n. Therefore, we have to find a p such 

that  the idle time of either machine,   say machine C,    will ^e minimal. 

Without  loss of generality we may assume    p -   (1,2,... ,1,14-1 n) 

A-    Al     .    A2     . A3 .  

B  ,       1     .     1   .  2.    2   .  3 3     . 

r yl Cl    y2    C2        y3      C3 

Figure 12 

Then (see Figure 12) 

yl = Xl + Bl = Al + Bl 

y2 = maxC^  + x2 + B1 + B2  - y1  - Cl,0) 

and  for any    n 
('n           n n-1        n-1            \ 

E x + Z B  - Z   y  - E C,,0 )    , 
1=1   1 1=] 1  1=1    1 1-1          / 

Therefore, 
n /n n           n n-1 
E y    = maxf   E x +  EB  -  EC ,   E   y 

i=l \1=1 1  i=l  1  1=1 i=l 
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n 
E   x . 

Then (see Figure 12) 

Xl " A1,X2 " max ^Al + A2  " xl   " Bl'  0^ 

and 
/" n-1 n-1 
ll,     Ai  -    E     xi  -     E   Bi,  0 

Therefore 

x    ■ maxi 
n y-l 1-1      *■      1-1 

n /  n n-1 n-1 
Ex- max!     E   A    -    E   B. ,     Ex       ). 

1-1 \1-1 1-1 1-1 

By    K      denote 
u i u u-1 

Then 

E   A.   -    E   B.,  and let    X    -    E   x.. 
1-1    i       1-1    i u      1-1    i 

X    - max  (K  ,K    ,). n n    n-1 

This  implies 

X1 - ^  (bo X0 -  0), X2 - max  (Kj,^), X3 - max  [K^maxd^.l^)] - 

- max  [K.,  KJ,  K.]. 

In general 
u-1       1 

x E   A    -    E   B    I . 
^i    1-1 1-1        I 

X    -     Ex«    max,  K    -    max 
n      1-1    1      l^i<n    u      l^i<n 

By    H      denote 
v i v v-1 

E   B.   -    E      C     ; 
1=1 1-1       1 

Then 
n 
E   y.  - max(H    + max K  ,  H    . + max K  ,... , H,  + K,) 

1-1 1^LI<^ Ku^i 

-    max (H    + K ) -  g (p) (4) 
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Ranark: This problem may be solved in a different way by fixing the end 

moment of the operation program (Instead of fixing the starting moment) and 

then looking for a program with a minimal operation time, with time running 

In an opposite direction.  The problem then reduces to one of minimizing the 

total Idle time for machine A.  Permutation (1,2,...fn) will then, In fact, 

mean permutation (n,n-l,...,1). The formula for the total Idle time of 

machine A becomes 
max (Hv + Ku), (5) 

where 
v     v-1 u      u-1 

H -  Z B - E A ,  K -  E C  - E B . 
1-1  1  1-1 1-1  1  1-1 1 

The graphical presentation of such a program differs from the one given In 

Figure 12 In that on the first row we present the working plan of machine C 

(which Is working non stop) while the third row corresponds to machine A. 

Formula (5) may be obtained In a straightforward manner from (4) by 

replacing A.  ly C.  and vice versa. 

Take a permutation p' - (1,2,... J-l, j+1,j , j+2,... ,n) which emerges 

from p by transposing j and j+1.  Consider 

g(p) -  max  (Hv + Ku) , g^') - max  (Hj + K^). 
l<u<v<i l^u^Kii 

It is easy to see that K = K*  and h - H1  for each u and v different 1 U    U V    V 

from    j    and    j+1.     Examine the expressions 

L = maxOlj + Ku,   1 £ u ^ j;    Hj+1 + Ku,   1 < u < j + 1) 

R - max(H! + 10,  l<u<J;    H'      +1^,   l<u<J + l). 

It is clear that if    L=R    then    g(p) - g^')    while the inequality    L < R 

implies    g(p) <g(p,)  (the equality    g(p) - g(p,)    holds only if    Hv + Ku 

attains  its maximum for    u    and    v    which differ  from    j    as well as 

from    j+1). 
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We may therefore restrict ourselves to consider L and R only.  First 

determine numbers  K', K*  , Hi, H! ..  The following hold 

j-l 
E B. = K. - A. + A..,, 

i.l  i    J    J   J+1 

j+1 j-l 
KI^i  =     Z    A,   -    E    B, - B.^.   =   K,^.  + Bs   - B.^,, 

j+1       1=1     i       i=l     i J+1          j+1         j         J+1 

j-l j-l 
Hi       =     E    B.  + B.^.   - E    C.   =  H,   - B. + B.^., 

j            i=1     i         j+1 i=1     1         J         J         J+1 

j+1 J-l 
H,..=     E    B,   -    E    C, -C.I1

=
H.I1+C,   -C,,, 

j+1       i=1     i       i=1     i J+1          J+1         J         j+1 

Replace in R the thus determined values  of    Kl,  Kl  . ,  Hi, Hi   ... 

Then 

L =  maxCH.+K, ,... ,H.   + K.   . ,HS+K. ;  H^.+K. ,... .H.^+K,   . , 
J     1 J j-l     j     J       j+1     1 J+1     j-l 

VI^J'V^V^ 

R = max  (HJ-BJ+BJ^+K^... ,H  -B +B      +K     j, 

Hj-Bj+Bj+1+Kj+Aj-Aj+1 

H
J+I

+C
J"

C
J+I

+K
I""

,H
J+I

+C
J"

C
J+I^^-i' Vi^j^j+i"*" 

+Kj-Aj+Ai+1.  HJ^+CJ-C^^K.^+BJ-BJ^). 

By substracting from    L and R    the same value 

j+1 j-l 
E   B    -    E   C,  = H.   .   + C,  = H. + B.^. 

i=l     i      1=1     *■        1+1 $        * J+1 

we get new expressions.  Call these L1 and R1 where 

L' -maxCK^..... K.^B^,  Kj-B^; 

1  4 •'* ' • i-1  4 ' ^1  4 ' ^i+l  i ' (6) 
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R' - maxCKj-B  K  -B , K -B +dA; 

^^i+i ^-i^j+r Kj"Vi+dA' Vi^j+r0^' 

where dA - A.. -A,,   dB » B.^-B.. J+l  1 j+l J 

The Inequalities  L' < R*  and L < R are equivalent. 

We will prove the following 

Theorem 3.  The optimal permutation p (the permutation p of the 
optimal program ABC)  is to be constructed according 

P P P ö 

to the following rule:  Element j must appear before 
element J+l —I.e., p = (. .. J ,... J+l... )—if for each 
i ■ l,...,n, j«l n-1  one of the following conditions 
holds. 

l:a)    Bj < Bj+1.  b) AJ+BJ < AJ+1+Bj+1.  c) BJ+CJ > Bj+1+Cj+1. 

2:a)    B1 > Cj.  b) Cj > Cj+1.  c) BJ+CJ > Bj+1+Cj+1. d) AJ-CJ < Aj+1-Cj+1. 

3:a)    B1 > Aj.  b) Aj < Aj+1.  c) A^ < Aj+1+Bj+1. d) AJ-CJ < AJ+1-Cj+1 

for J=l ,2,... ,  n . 

Proof;   Transpose two elements J and j+1 in an arbitrary permutation 
p of n numbers  l,...,n.  Denote the new permutations 
by p'.  Without loss of generality we may assume p=(l,...,n). 
Then p1 = (1,. • • ,J-1,j+l,J , j+2 n) 

I. If p satisfies condition 1, then L* < R1, since for each 
r = 1,2,...,2J+l the rth element of L1 is less than the 
rth element of R*.  We will show this only for r =j,2j ,2j+l. 

since the proof for all remaining r is obvious (see 
assumption  la, 1c) 

For r=J:  K - B  . < K - B + dA = K " B + A 1 - A .  Hence we get 

AJ+BJ < Aj+1 + Bj+1 which holds because of lb. 

For r»2j:  K -C. < K. - C  . + dA = K - C  . + A . - A  which implies 

the relation   to be proved -- viz. , 

AJ + CJ+1 < AJ+1 + CJ 
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From 1c  it follows that B. + C, + A, . >B. . + C.., + A,.,  while lb 
j    j   J+l   j+1   J+l   J+l 

implies A. . + B  j + C  . > A + B + C  ..  Applying the last two results 

we get 

and consequently 

V VW VVVi- 

VI 
+
 

C
J
>A

J 
+
 VI • Q-e-d- 

For  r.2J+l: Kj+1 -C^Kj^ -CJ+1 -B^ + Bj   hence 

Vl + Cl+1 < 
B3 + CJ- 

This Inequality is true in view of 1c.       Thus we have proved that if p 

satisfies condition 1  then L1 < R1  which in turn implies  g(p) < gCp')» 

The relations given by condition  1 are transitive.  Consider, say, 

relation A, + B < A .. + B. ...  It is easy to see that for any 

i,j ,k » 1,... ,n , i |< j ^ k, the inequalities A. + B, < A + B  and 

A. + B, < A, + B.   imply 
j   j    k   k 

A. + B, < A, + B. . 
i   i   k   k 

The proof of transitivity for the other relations goes in a similar way.  The 

property of transitivity implies the existence of a procedure for constructing 

a sequence of permutations starting from any given permutation and continuing 

to the optimal one in such a way that the corresponding numbers g(p)  form 

a nonincreasing sequence. 

Let us illustrate this procedure by an example.  Suppose that from 1 

we have the following relations  (i ->J means that i precedes  j) 
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1 - 2, 1 - 3, 1 - 4, 1 - 5, 2 - 3, 2 - 4, 2 - 5, 3 - 4, 3 - 5, 4 - 5. (7) 

Consider a permutation  (2,4,3,1,5) = q.  The first "disorder" in q 

(looking from the left side) is  4,3 (according to (7)).  Therefore permu- 

tation p  is at least as good as  q  since g(p) < g(q)-  Removing the next 

"disorder" in p we get another permutation not worse than p,  and so on. 

Thus the following sequences emerge 

q = (2,4,3,1,5), (2,3,4,1,5). (2,3,1,4,5), (2,1,3,4,5), (1,2,3,4,5) = p. 

Permutation p  is optimal since for any permutation p:  there exists a 

sequence of permutations  p',...,p,  where g(p') >..• >g(p)>  which implies 

gCp') > g(p) Q.e.d. 

The rule for finding the optimal permutation under condition 1 is the 

following:  Arrange numbers B....,  in a nondecreasing sequence.  The 

sequence of the corresponding indices is the optimal permutation. 

Since we don't know, a priori, whether condition 1 holds, the following 

procedure is therefore proposed.  Form sequences  [B.], {A. + B,}  and 

{B + C.} , the first to be nondecreasing and the last to be nonincreasing. 

If all three sequences which form the corresponding indices are identical, 

call them p , then, condition 1 holds and p is the optimal permutation. 

II.  We shall prove the theorem in the case where condition 2 holds 
(the proof of the theorem under condition 3 goes in a similar 
way since condition 3 can be obtained from condition 2 by 
replacing the symbols A.  by C.  and vice versa and by changing 

the direction of inequalities.). 

We are to show that L1 < R1. 
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RE:mark: the th term in Ll for each 1 ~ r < j is not greater r-

than the j + ~ term of L I. the th term of R' for r-

for 1 < r 5 j-1 is less than the j + ~ term of Ll 

while the j-th term of R1 is less than the 2jth term 

of R 1
• 

To prove that L 1 < R' it is sufficient to show that the th r- term 

of L1 for j $ r $ 2 j+l is less than the th r- term of R 1 • The proof 

will be shown only for r = 2j ,2j+l since for the remaining r the proof 

(see condition 2b) is trivial. 

For 

which lea ':£s t o 

This inequality holds in view of condition 2d. 

For 

BJ+l + cJ+l < BJ + cJ 

and this also holds in view 2c. 

which implies 

In a way similar to the earlier development, one can show that conditions 

2b, 2c, 2d, are transitive which implies that p is an optimal permutation 

provided it satisfies condition 2. To find the optimal permutation arrange 

numbers 1, •.. ,n in such a way as to satisfy conditions 2a, 2b, 2c, 2d. If 

in each case we get the same sequence, say p, then p is the optimal per-

mutation. 

'nle following theorem holds: 

Theorem 4: Let ~in (Ai +C.) = A + Cj • If for each i,j•l, ••• ,n 
l$i,j$P J io o 

Bi ~ max (Aj,Cj) th en any permutation of the form 

( i , ..• ,j ) , (j , ... ,i ) is optimal. 
0 0 0 0 
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Proof:  Denote    p=   (i   ,...,i   )   ,  p1 »  (1   ,....i   ).     Permutation    p "  o o o o 
as well as    p'     is  optimal because the corresponding 

operation  time  for  program    ABC       as  well  as   for 
P P P 

A   |B   tC   ,     is   equal   to 
P    P    P 

n 
E    B,  + min   (A,  + C.) 

1=1     *       i=fj       * J 

and no other  program has  a  smaller  operation  time. 

Example.     Consider a    3x5    Bellman-Johnson problem with  the following 

table of operation times    (Table 5) 

1 

2 

3 

4 

5 

*; 
Ci 

4 3 15 

6 7 8 

7 7 8 

5 9 4 

6 5 10 

Table  5 

To check whether condition  1 holds   form the following  table (Table 6) 
AJ+BJ^ BJ        Bi+Ci 

1 

2 

3 

4 

5 

7 3 18 

13 7 15 

14 7 15 

14 9 13 

11 5 15 

Table 6 

Arranging  the items  in a    nondecreasing sequence of    B.     we get two permu- 

tations     (1,5,2,3,4)    and     (1,5,3,2,4).     Arranging the  items  in a nondecreas- 

ing sequence of    A^+BJ    
we obtain  two sequences   (1,5,2,3,4)    and  (1,5,2,4,3), 

while  arranging    B.+C.     in  a  nonincrensing sequence get  six permutations  -- 

among them  (1,5,2,3,4)    which   is  the only one appearing  in each case. 

^i^MM^k^Mi^ MM 
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Therefore  (1,5,2,3,4)     is   the  optinml   sequence. 

6      The Sequencing Problem With  a Time Lag. 

The problem considered  in  thin  section  is  a generalization of the    2xn 

Bellman-Johnson case which  is  obtained by  Introducing a  condition under which 

there must be some waiting  time of at  l^ast    D     - A      duration for item     1 

after it  is  finished on machine    A    and before it  starts on machine    B. 

(The processing order is    AB    for all  the items).     The case when,  for all 

i,    D.   ~ A    < 0,  reduces   to a classical    Bellman-Johnson problem.     The pro- 

blem considered by    Mitten  in  [8]   is also a generalization of the Bellman- 

Johnson case.    The problem considered here, however,   is not a special case 

of Mitten's problem,  or vice versa.     Indeed Mitten introduced time lags 

because he assumed that  the same item can be handled by  two machines 

simultaneously. 

Remark:    The Johnson  procedure (as well as  the notations) are similar 
to that in   [8]. 

By    A, ,B  ,D -A   , denote operation times and   idle times  for item    i. 

Let    t!     and  t      be the corresponding  instant when item    i    starts on 

machines    A    and    B,  respectively.     If item    i-1     is operated on just before 

item    i,   then 

ti = max(ti_1 + B^, t^ + Ai, t| + D^. (9) 

If by x, we denote the idle time fur machine B  after it has finished 

item i-1  but before it starts to operate on item i, then 

xi= ^ " Vi ■ Bi-i- <10) 

!♦■ is easy to show (the proof is similar to that one of theorem 2) that one 

may restrict attention to programs of the type A B  since at least one 

optimal program must be of this type.  Therefore, we are to find a  n 
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element permutation p of numbers  l,...,n which will minimize the total 

operation time T(p) of program A B  where 
P P 

T(p) -  E B1 +  E x^^ 
iep     iep 

Since 
n 

LB- E B 
i«P     i-1 

is constant the problem reduces to one of finding a permutation p for which 

the total idle time of machine B 

E xi - g(p) 
iep 

will be minimal. 

Divide the set  (1 n)  into two disjoint subsets  s and s' where 

s - {(i) | Ai-Bi = E1 < 0 )  and s' = ((i) | Ei > 0}. 

Suppose    s    consists of t elements while    s'     consists of n-t elements.     The 

following  theorem holds. 

Theorem 5.     If the  first    t    elements of the permutation 

p* «  (il,   i2,... ,i   ,i       ,...,1^)    belong to    s    while 

the remaining    n-t    numbers are elements of    s'    and 

if the following relation holds 

maK(A     ,D     ) < max(A,   ,D     ) < . . .   < max  (A     ,D     ) 
ll     ii i2    h    " ~ 11 

as well  as 

max(B ,D - E.       ) > maxCB,        ,D - t, ) > ... 
l+l      l+l l+l 1+2      1+2        ^1+2 

> max(Bi   ,Di     - Ei   ) 
n      n n 

then    p*     is  the optimal permutation« 

llAtf^Mal^aaaaB>^a 
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Proof;    Consider a permutation    (1,2,...tn).     One may assume     tl ■  0 

and   t.   = x  .     Applying    (8)     and     (10)    we get 

u-1 u u-1 
t'  -   Z    A^,     t    =     S   x. +     E    B,     for    i -  l,2,...,n u iu i i 

i-1 i=l i=l    1 

since:     t^ = xi + t:i_i + Bi-i »   'i " xi + ^- 

2 
t- = x- +  t    + B.  =     E   x.  + B      and  so on). 

Therefore 
u u-1 
S   x.  - t     -    IB. (11) 

i=l    1 U       i-1    i 

u-1 
From     (9)      we find    t  (t* =   E      A.) 

U    U     i=l       i 

u-1 u-1 
t    =  max(t     .  + B     , ,       E    A.   + A   ,       E      A, + D   ). u ^ u-1 u-] ' ^    i u* i        u 

u-1 u-2 
t        =    E   xJ  +     E   B, , 

U'"1       i-1     i       i-1     i 

therefore 
/u-1 u-1 u u-1 \ 

t    - max (EX+ZB., EA, EA,+D)     . 
u \i-l i-1 i-1 i-1 y 

Applying this result in    (11) we have 
u                       /u-1        u-1          u-1 u u-1 
Ex- max (    E x + E    B     -  E   B E   A. -    E   B. , 

i-1                     \i-l        i-1           i-1 '  i-1 i-1 

u-1 u-1 \ /u-1 u-1 u-1 \ 
E    A  -  E B >D   )  - X    = max I     Ex.,     E E^+A  ,       E E +D   ]     . 

i-1     i  i-1  i    7 U \i-l i    i-1  i    U      i-1 i    V 
Formula  (12) implies X, = max (O^Aj^, OfD.) - max(A1,D1). 

Since 

(12) 
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Similarly, 

X2 - maxCmaxCAj.Dj),  (Ej+A^^+D  )] 

maxCCA^D.),   (E.+A«),   (E.+D»)] - max 
1 l<u<2 

u-1 u-1 
E E,+A  ,  Z E.+D 

1-1 1    U 1-1  1     U 

In general: 

X    = max 
n    l<u<h 

u-1 u-1 
T. E.+A   ,    E   b.+D 

1-1 1    U    1-1    i    u 
8(p). (13) 

Consider an arbitrary permutation    p ^ p*.    We will  show 

that    g(p) > g(p*)'     Without loss of generality we may assume 

that    p -   (l,2t...,n).     Since    p ^ p* it  follows  that    p    does 

not satisfy  the assumptions of theorem    5.     Therefore,   there 

must exist  in    p    two neighboring elements,     say    J and    j+1, 

such that one of  the following cases holds 

(a) j,j+l es' 

(b) j,j+l  e  s« 

(c) j  e s',  j+1 e s 

It will be shown  that    p1 - (1,2,...,j-l,  j+l,j, j+2,... ,n) 

satisfies condition    g^') < g(p)-       Let 

and      max(A.,D.) > max(A.  , ,D    ,) 

and      max(B   ,D   -E )< ...ax(BJ+1 ,D      -Ej+1) 

u-1 u-1 

u 
E   E.+A   ,    and    Q    =     E   E>D  . 

i-1    i     U U      i-l    i    U 

Then 

g(p) - max [PU.QU].     and    g(p,) - max  [P^.Q^], 
l^u^i l^ll^l 

where 
Pu ' ^u " Qu        for     u ' 1'2 J-1.J+2 n 

p] '^VVi' Q
J 

=
ii

:
1
Ei+Vi' p]+i \^

Ei+E^i+ AJ' 
Q'      -     E   E,+E,., +D, 

CJ+1 i=l 
Ji "J+1    ~i 

There are two cases:     either    g(p) =    max(P  , Q   , P,.,. Q1+i) or 

g(p)4    max(Pj,Qj,P.+1.Qj+1). 
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In  the  first case    g(p) = g(pf)    which implies    gCp') < g(p). 

Consider  the second  case.     We are  to show that 

max   (Pj. Q!.  P'+1, Q'.+1)  <max(P.. Q. .   P .+1.  Qj+1). 

i.e.   that   the  following  inequality  holds 

max 

<    max 

j-l j-l 
T. E +A       ,     E E.  + D 

i=l J i=l 

j-l j-l 
E E.+E., .+A. ,     E E^+E. . ,+D, 

i     j+1     ,_i   ! J+l     i=1   i     J+l    J     i=1   i     J+l     J 

J-l j-l j j "I 
EE.+A,,     EE.+D.,     EE.+E.+A...     E   E.+E.+D.,. 

i=l   ^     J     i=1  ^     J     i=1   ^     J     J+l     i=1     ^     J     J+lJ 

j-l 
Subtracting       E    E.     from both    sides  of the last  inequality we get 

i=l     1 

— (Aj+1.Dj+1.Ej+1 + ArE.+1 + D.) < niax(AJ.D..YAj+1.Ej+Dj+1).(l4) 

Denote by     L    and    R    the left and  right hand side of      (14) 

Consider case (a) 

According to the assumption  in  the  theorem    E. < 0    and    E.,,<0. 

Therefore 

Vi > Wi'Vi> Wi'Aj > VI
+A

J 
and D

J 
> E

J+I
+D

J- 
Inequality    L < R    will be true if 

max(A    j.D       ) < max(A   ,D  ). (15) 

But    (15)    holds  in view of the assumption of the theorem.     Therefore 

L < R    which  implies    gCp') < g(p). 

Consider case    (b). 

It  is  assumed    E. > 0    and    E...,   > 0 .    This   implies 

Aj ^ Vi+Ai' D
J ^ W' Vi ^ Wiand Vi - Wi- 

Relation    L < R    holds if 

max(E.+1+A   ,E    j^ + D  ) < max(E +A^ ,E +D      ). 

Subtracting    E. + E,   .     from both sides we get 

max(Aj-ErDj-Ej) < -ax(Aj+1-Ej+1 ,Dj+1-EJ+1). 



■▼■•»- 

■35- 

Thls may be wrli.cen In  the form 

maxCBj.D  -E  ) < niax(Bj+1,D      -Ej+1). (16) 

Since     (16)    holds,  by  assumption,   it   follows  that     L < R     and 

g(pl) < g(p). 

Consider  case (c). 

By  assumption    E,  > 0    and     E.   ,   <  0    which  leads  to 
j  - J+l 

VJ ^ Wi ' Vi ^ EJ+DJ+I • Wi< AJ • W < Dj- 

This   in   turn  implies ^ ^ R   .   gCp')  ^ g(p)-     Thus we have 

showed  that  if  permutation    p     satisfies  one of the conditions 

(a),   (b),   (c)     then there exists  a permutation    p'    which  emerges 

from    p    by  transposing  two neighboring  elements  of    p     and    where 

8^') < 8(P)-     This  implies  that  for any  permutation    p 4  P* 

there exist at  least a  finite sequence of permutations 

P.P'.P" P*     with    g(p) > g(p' )  > g(p") > ...   > g(p*) where  eacli permu- 

tation of  the sequence is  constructed  from the preceding one by 

a  transposition  of two elements.     Permutation    g(p*)    is  optimal 

since for any permutation    p,   g(p) > g(p*). 

Example;    Consider  a    2x5    problem with  the   following data (Table 7) 

B. 

1 

2 

3 

4 

5 

Di E,       D   -E      max(Ai,Di)      max^J^-E^ 

3 2 3 1 2 2 

2 4 2 -2 4 2 

1 5 U -4 8 4 

4 3 2 1 1 3 

3 4 1 -1 2 3 

Table 7 

-—     --   -^-*«^^-—^^-»x»—MJfc- 
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Here    s =   (2,3,5)    and    s' =   (1,4).     According to  theorem 5  in  the optimal 

sequence:     1)  elements    2,3,5    appear before elements    1,4.     2)     the numbers 

2,3,5    are arranged so that values    max(A   ,D.)    form a nondecreasing sequence, 

3)    the numbers  1,4    are arranged  in such a way that    max(B. ,D  -E. )    form 

a    nonincreasing sequence. 

Therefore,  permutation    q =(2,5,3,4,1)     's optimal.     Figure 13    shows 

the working schedule of program    A B  . 

A   .   2   ,    5     ,3, 4 ,     1     , 

B t—i , 1 I    ^     ■ 1 , 

Figure 13 

Remark;       If    D    <A      for each    i=l,...,n    then as mentioned,   the 

problem reduces  to a classical Bellman-Johnson case.     Then 

according to    (9)     t,     becomes    t    » max(t    .+B, _. »t'+A.). 

For this case the inequalities appearing in the statement 

of theorem 5 will be as  follows 

A.    < A      < ...   < A     , B < B < • • •   < B     , 
11 2 Xl      Vl -6+2 n 

since 

max(A   ,D  ) = A    and max(B   ,D  -E ) = max(B   ,D  -A +B   ) ■ B  • 
*• ^ W Li ll> L> t I* Ir t V 

This  implies a rule of constructing an optimal  sequence, 

which rule was stated in Section 2. 

7      Some Properties  of the Approximate Solution Method of  the    mxn Case. 

In Section 3 an approximate method of solving the    mxn    case was given. 

We will show  that  this method is an exact method  for the problems presented 

in Section 2. 

Consider  the    2xn    Bellman-Johnson Case.     According to  the method men- 

tioned,  one must  first solve (»)    different    2x2    problems   for  each 
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T* 

1»j " A,. ..,n , 1 7 J  by the method given in Section 3.  Consider one of the 

2x2 cases (see Figure 14). 

Itim i 
Figure 14 

It is easy to see that the optimal line can only be either one of the two 

(Indicated on Figure 14 by arrows) linking  P and Q.  The lower line corres- 

ponds to the program A,  . B,   . while the upper line corresponds to the 

program A(.)i)B(j>i). 

By z and  z'  let us denote the total length of all vertical segments 

corresponding to the lower and upper line (this is the total waiting time for 

Item i  in the 2x2 problem) Then (see Figure 14) 

z =  B    + max  (0,  A     - B^, 

z1-  A.  + max  (0,  B     - A. ). 
j j 

The sufficient condition  for the lower line  to be optimal  is 

B    + max(0, A     - B^ < A    + max(0,  B     - A^. 

where an equality  sign may also appear.     This   inequality may be rewritten  as 

max(B   ,  A    + B     - B^ < max  (A   ,  A. + B     - A^. 

Subtracting    A. + B.     from both sides we get 

max(- A   ,   - B  ) < max(- B   ,   - A^. 

which after simple  transformations becomes   the equivalent form 

min(A   ,  B^ > min(Ai,  B   ). (17) 

Mk 
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Condition   (17)     is  identical  with   that  of Bellman-Johnson   (see  [7]).     Since 

(17)     is   transitive we will  get   from  the     (_)    problems  of  the  type    2x2     a 

solution  of  the    2xn    problem  identical  with  the optimal   solution obtained 

by Johnson's method. 

Remark:     One may derive  condition  (17) directly by  looking  for 
a   line for which   the  total   length  of  the 45°  segments  is 
maximal.     Let us  denote  such  a  length   for  the  lower and 
upper line by     z  and   z'     respectively.     Then   (see Fig.   14) 

z =  min(A   ,   B.) , z' = min(A,,  B,). i'  ~j 

The lower line represents an optimal program if 

min(A., B ) > min(A., B ), 

which  is   identical with  condition   (17). 

Consider a     3xn    Bellman-Johnson  case while additionally  assuming  that 

for each     i,j =   l,2,...,n   ,       at  least one of the relations     B,  <   A      , 

B    < C       holds. 

Here we consider    („)    different    3x2    problems.     Take one. of those 
may 

for items  i and j,  say,  (see Figure 15).  According to Johnson in [7] we/ 

look for an optimal program among programs of the type ABC.  This 

implies that one can find the optimal line by examining only two lines as 

presented on Figure 15. 

item i 

Figure 15 
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Let us denote by    w    and    w'     the  totnl   length of  the    45       segments  of the 

lower and upper line respectively.     Then    (see Figure 15) 

w = min(B    + C   ,  A    + B  ), 

w = min(A.  +  B, ,  B. + C.). 
i i       J j 

So  if    w    > w1 

mln(B.  + C.,  A    + B   ) > min(A    + B   ,  B    + C.), (18) 

then the lower line is optimal and  this means that program    A-.,   .v  B,     ,. 
\i»J/     \i»J/ 

Cf.   .v is  optimal.     Condition  (18)     is   identical with  that  given by 
\i i J / 

Johnson in [7]. 

The transitivity of (18)  implies   that  the   mxn    method  always  solves 

the    3xn      Bellman-Johnson case under  the condition    B    < A      or    B    <C.. 

One can easily show that this method solves  the    3xn    Bellman-Johnson case 

when    B.  > max(A  ,C   )    for each    i    and    j     as well as  the    2xn    case 

from Chapter 4. 
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